>

影响燃料电池寿命原因及应对策略简析

2020-04-01 完美作业网有免费视频

  根据统计,目前全国有不少城市在运营的氢燃料电池客车已超过100辆。业内普遍认为,疫情结束后,氢燃料电池客车市场很可能有更大突破。因此如何做好燃料电池客车的“功课”,尤其是研发部门和车企如何联手攻克燃料电池的核心技术难题---燃料电池的寿命衰减显得非常重要。

  众所周知,燃料电池和内燃机相似,都是把一种能源通过装置转化成另外一种能量。其主要特点是清洁、高效、功率高、无噪音,用在汽车上面充气只有三分钟,续航里程达700公里,是理想的能量转化装置。因此,燃料电池汽车是未来发展的主流,但燃料电池的寿命衰减是发展燃料电池汽车的“拦路虎”。那么,应对燃料电池寿命衰减的策略有哪些?

  一、我国在燃料电池系统核心指标方面与国际先进水平差距简析

  根据公开数据:

  可见,在燃料电池系统核心指标方面,我国与国际水平差异较大,因此影响了我国燃料电池的寿命。

  二、 影响燃料电池寿命的原因简析:

  1、质子交换膜在燃料电池运行过程中会变薄,出现针孔、撕裂的现象,这是影响质子交换膜燃料电池寿命的一个主要方面;

  2、在燃料电池运行的过程中,催化剂可能出现团聚,再沉积,出现流失,导致催化剂的活性降低,影响燃料电池的寿命;

  3、气体扩散也会影响燃料电池的寿命,主要是气体扩散层的速水材料会慢慢流失,然后表面发生变化,从而影响燃料电池的寿命;

  4、双极板在燃料电池运行过程中受到腐蚀也会影响使用寿命。

  三、应对燃料电池寿命衰减的策略简析

  1、可以用增强质子交换膜来增强其机械性能,延长燃料电池使用寿命

  专家认为,针对质子交换膜运行中出现的问题,可以用增强膜来增强它的机械性能,延长使用寿命。在车用燃料电池运行过程中,关键材料质子交换膜会产生物理或化学衰减,物理衰减主要是由于动态温湿及压力波动导致的膜机械损伤,化学衰减主要来自于反应过程中形成的氢氧自由基对膜结构的损害,这些均导致燃料电池性能不可逆转的衰减。研究人员从全氟磺酸膜的结构改进、全氟磺酸膜的改性、烃类膜及碱性膜等方面入手,寻找高稳定性、低成本膜的解决方案。与目前采用的Nafion®膜比较,短侧链 (short side chain, SSC)的全氟磺酸膜其磺酸基团密度较高,质子传导率要高于 Nafion®膜,并表现出了良好的耐久性。典型的有美国陶氏 (DOW) 膜,还有Solvay Solexis公司开发的一种与DOW结构相同的Hyflon®Ion (EW=850~870) SSC膜,由于采用简单的合成路径,使成本得到大幅度降低。利用 Hyflon®Ion膜制备的MEA5000 h耐久性试验表明,该种类型的膜没有明显的针孔与膜减薄现象,透氢率也小于 Nafion®112。SSC膜的缺点是比较脆,可采用增强Nafion膜的思路,制备增强复合SSC膜,以进一步提高其机械性能。有限的车辆空间使人们更加追求高功率密度的燃料电池,这促使膜趋于薄膜化。为了补偿均质薄膜的强度问题,研究人员研制的增强复合膜可有效地增加膜的机械性能。美国Gore-select™复合膜是这种增强膜的典型代表,国内大连化物所也研制成功了低成本、高强度的Nafion/PTFE复合增强膜,采用热台方法制备,结果表明这种复合膜尺寸稳定性明显优于 Nafion®膜,强度也有所提高,增强了抵抗变工况时膜的抗冲击能力,国内正在进行这种膜的小批量试制中。此外,研究人员还探索了多种纳米管增强复合膜等也展现了良好发展前景。

  2、催化剂方面采取的对策是,可以用高比表面体的载体、抗反击的催化剂、以及氧化的载体,使用化学过滤器,使氢气和空气干净,不受污染,从而保证催化剂活性不降低,提高使用寿命

  在高稳定性催化剂研究方面,主要从Pt/C催化剂的改进与新型催化剂研究两方面进行研究与探索。目前采用的Pt/C电催化剂稳定性欠佳,在燃料电池动电位扫描下会产生溶解、聚集、流失等现象,导致活性比表面积减少。

  通过对制备方法的改进,进行形貌控制,可有效地提高其活性与稳定性。通过贵金属元素对Pt/C进行修饰,可提高催化剂的稳定性。如以Au cluster修饰Pt纳米粒子,提高了Pt的氧化电势,起到了抗 Pt溶解的作用,经过3万次循环伏安扫描,与Pt/C比较其稳定性有了大幅度提高。此外,加入Pd也可提高Pt的氧还原活性,并改善其抗氧化能力。研究表明,Pt3Pd/C与Pt/C相比较,在循环伏安扫描加速衰减实验中的抗衰减能力得到较大提高。采用其他过渡金属与Pt形成的二元催化剂Pt-M/C,也是提高催化剂稳定性与降低成本的一个有效途径。利用过渡金属M与Pt之间的电子与几何效应,提高了Pt的稳定性及比活性,同时,降低了贵金属的用量,使催化剂成本也得到大幅度降低。如Pt-Co/C、Pt-Fe/C、Pt-Ni/C等二元催化剂,展示出了较好的活性与稳定性。Pt-M1-M2/C三元核壳催化剂也是目前研究的热点课题,利用非贵金属为支撑核,表面贵金属为壳的结构,可降低Pt用量,提高质量比活性。如采用欠电位沉积方法制备的Pt-Pd-Co/C单层核壳催化剂总质量比活性是商业催化剂Pt/C的3倍,利用脱合金方法制备的Pt-Cu-Co/C核壳电催化剂,质量比活性可达Pt/C的4倍。催化剂除了需要工况循环下的稳定性以外,抗毒性也非常重要,如得到广泛研究的Pt-Ru/C催化剂具有较好的抗CO性能;对于其他杂质如硫化物、NH3等的抗毒催化剂,目前还处于研究阶段。空气中痕量的SO2,都会导致催化剂中毒,希望研制一种能够降低硫化物电化学氧化电位的非Pt金属与Pt形成的合金催化剂,在保证氧还原活性前提下,SO2能在正常电压范围0.6~0.7 V内就能氧化成SO3,并与电池内的水结合为硫酸,可降低硫化物对燃料电池的危害。总之,Pt基多元催化剂在提高性能、稳定性、抗毒物、降低成本方面均展示出一定的发展潜力,但一些研究成果尚需产品规模的验证,使替代催化剂尽早推向应用。

  3、对于气体扩散问题,选择改变工艺。

  4、为了解决双极版受腐蚀而影响使用寿命的问题,可以采用防腐的主层,燃料电池可以达到车用寿命的要求。

  双极板材料分为石墨、石墨金属复合及金属3类。纯石墨板是早期采用的双极板材料,现在有些企业还沿用这种材料,但由于其材料与制造成本很高,难于满足商业化的需求,正在被石墨粉与树脂的复合模压板技术取代。以Ballard公司为代表的填充膨胀石墨双极板,采用模压工艺,成本大幅度降低,已经在燃料电池示范车上得到了成功的应用。然而,石墨双极板材料的非致密性,会直接导致燃料电池发电效率的降低和潜在的安全问题;且随着双极板的减薄,给材料的致密性会带来更大的挑战,使比功率密度提高具有局限性;此外,在零度以下运行时,由于石墨板微孔内会有一定的水残存,水的冷冻与解冻会削弱材料的强度。以大连化学物理研究所为代表的石墨金属复合双极板,弥补了单一石墨双极板的不足,表现出了良好的工况适应性,其电堆已经用于国内示范燃料电池汽车与发电装置上。

  车用燃料电池由于空间体积的限制,对燃料电池比功率要求越来越高,因此,薄金属双极板成为了研究的热点,GM公司开发的基于金属双极板技术的燃料电池电堆,其比功率已经达到3 kW/L、2 kW/kg。金属双极板主要的技术挑战是要满足导电、耐蚀性与低成本的兼容。研究表明特殊的高合金钢,可以满足燃料电池环境中耐腐蚀性要求,然而界面导电性还不够理想。因此,目前更多的研究集中在不锈钢材料表面改性上,如碳膜、Ti-N、Cr-C、Cr-N膜等均表现出具有良好的性能。金属双极板表面处理层的针孔是双极板材料目前普遍存在的问题。此外,金属阳离子污染导致电池性能下降也值得关注。

行业动态
相关阅读
完美作业网有免费视频[www.beltsegypt.com]版权及免责声明:
1、凡本网注明“来源:www.beltsegypt.com” 的所有作品,版权均属于完美作业网有免费视频,未经本网授权,任何单位及个人不得转载、摘编或以其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:www.beltsegypt.com”。违反上述声明者,本网将追究其相关法律责任。
2、凡本网注明 “来源:XXX(非完美作业网有免费视频)” 的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。
3、如因作品内容、版权和其它问题需要同本网联系的,请在30日内进行。
※ 有关作品版权事宜请联系:copyright#chinabuses.com
微信 分享 咨询 电话 顶部
×
完美作业网有免费视频微信二维码
×
×
400-660-0262